PHYSICAL DESIGN METHODOLOGIES FOR LOW POWER AND RELIABLE 3D ICs

نویسندگان

  • Tiantao Lu
  • Ankur Srivastava
چکیده

Title of dissertation: PHYSICAL DESIGN METHODOLOGIES FOR LOW POWER AND RELIABLE 3D ICs Tiantao Lu, Doctor of Philosophy, 2016 Dissertation directed by: Professor Ankur Srivastava Department of Electrical Engineering As the semiconductor industry struggles to maintain its momentum down the path following the Moore’s Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV’s electromigration (EM) and several other reliability loss mechanisms caused by TSVinduced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit’s performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a nonuniform bit-cell leakage (thereby bit flip) distribution. We propose a performancepower-resilience simulation framework to capture DRAM soft error in 3D multicore CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU’s operating points to adjust DRAM’s voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM’s resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future. PHYSICAL DESIGN METHODOLOGIES FOR LOW POWER AND RELIABLE 3D ICs

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability of Analog-to-Digital Sigma-Delta Converters

Due to the continuously scaling down of CMOS technology, system-on-chips (SoCs) reliability becomes important in sub-90 nm CMOS node. Integrated circuits and systems applied to aerospace, avionic, vehicle transport and biomedicine are highly sensitive to reliability problems such as ageing mechanisms and parametric process variations. Novel SoCs with new materials and architectures of high comp...

متن کامل

Methodologies and Toolflows for the Predictable Design of Reliable and Low-Power NoCs

Academic Year 2013. . To Paola, because no matter what it has always been the two of us.

متن کامل

Fuji Electric Power Supply ICs Providing Multiple Solutions for Multiple Requirements Energy-saving Power Management Realized with a Single Chip

Features: ¡ The single chip solution integrating power transistors and control circuits by C/DMOS process capable of built-in low on-resistance DMOS output transistors. ¡ Low power consumption by CMOS analog circuits. ¡ Wide range of applications for various power supply configurations such as synchronous rectification, switching polarity of drive transistors, etc. ¡ Wide variety of packages me...

متن کامل

Energy Efficient RF Communication System for Wireless Microsensors

Emerging distributed wireless microsensor networks will enable the reliable and fault tolerant monitoring of the environment. Microsensors are required to operate for years from a small energy source while maintaining a reliable communication link to the base station. In order to reduce the energy consumption of the sensor network, two aspects of the system design hierarchy are explored: design...

متن کامل

Low-power Methodology for Fault Tolerant Nanoscale Memory Design

Low-Power Methodology for Fault Tolerant Nanoscale Memory Design by Seokjoong Kim Millions of mobile devices are being activated and used every single day. For such devices, energy efficient operation is very important; low-power operation enables not only long battery time but also improves energy efficiency of the servers that communicate with the mobile devices. However, reduced noise margin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016